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Abstract 

It is shown how the Wheeler-Dewitt and Hamilton-Jacobi equations for a 
two-dimensional minisuperspace may be solved in full generality if the super- 
potential of the wavefunction is a separable function of the minisuperspace null 
coordinates. In this c8se, the system may be viewed as a constrained oscillator- 
ghost-oscillator model. These solutions describe the quantum cosmology of a 
renormalizahle two-dimensional dilaton gravity theory and the quantum dy- 
namics of the event horizon in Hindler space-time. 
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In the canonical quantization of General Relativity, the classical Hamiltonian con- 
straint 3-1 = 0 is viewed as a quantum mechanical operat,or that annihilates the 
physical states 111! of the vniverse: 7-N = 0. This functional differential equation gov- 
erns the dynamics of the wavefunction in an infinite-dimensional configuration space 
known as superspace. Currently it is not known how to solve this equation in full 
generality, but progress can be made by imposing a high degree of symmetry on the 
system and considering a dimensional reduction of super-space to a finite-dimensional 
sector known as minisuperspace. If the minisuperspace is two-dimensional, the Hamil- 
tonian constraint (Wheeler-DeWitt equation [l]) has the generic form of a hyperbolic, 
second-order partial differential equation: 

1 

a* a2 w-w 
ad ap* - 4m*(a,p) 

I 
rk = 0, (1) 

where the ‘superpotential’ m*(a, p) is some function of the minisuperspace coordi- 
nates (a, p). 

Equations of this form also arise in a number of other fundamental problems in 
physics and cosmology and it is therefore important to develop techniques that allow 
exact solutions to be derived in a straightforward manner. The purpose of this letter 
is to illustrate how this equation may be solved for a wide class of m2(a,p). We 
assume that the super-potential is positive definite, although the analysis is easily 
extended to negative potentials. Examples include minisuperspaces corresponding to 
a (1 + 1)-dimensional dilaton gravity theory and the event horizon of the Rindler 
space-time. 

If the function m*(q p) is independent of the minisuperspace coordinates, Eq. (1) 
may be transformed into the canonical form 

a* [ 1 --1 *=o, auav 
where u = m(a+P) and v = m(a - p) are null coordinates over minisuperspace. This 
equation has been studied previously by Page 121 and one family of solutions is given 
by iIr* = e -ibu+k/b, where+krra.rbi+rary-complex constant:-This-family- forms the 
basis for the general solution which can be expressed as the two-dimensional integral 
* en = J &L(b, b’)Q b, where the density L(b,b’) is an arbitrary function. The 
wavefunction is bounded and square-integrable if L(b, b’) is finite and only supported 
in a compact region when Imb < 0 [2]. In this case, Cauchy’s theorem implies that 
the two-dimensional integral may be replaced by the line integral 

J +oO a pen = dwq%, -00 
where M(b) is an arbitrary function. 

In general, however, it is rather difficult to evaluate the integral (3) analytically. 
On the other hand, new exact solutions may be generated after further coordinate 
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transformations. For example, the transformation I G fi - fi, y G fi + fi maps 
the system onto a constrained oscillator-ghost-oscillator model, where the \\‘heeler- 
De\Vitt equation is the wave equation for two harmonic oscillators with equal and 
opposite energy [Z, 3, 4). The general solution is 9 = CF&c,\k., where c, are 
arbitrary complex constants, 

\E n = (2nn!)-1Hn(z)Hn(y)exp[-(z2 + y*)/2], (4) 

and H,, is the Hermite polynomial of order n. The ground state is defined by n = 0 
and q,, form a discrete basis for all bounded wavefunctions satisfying the unit-mass 
Klein-Gordon equation (2). 

Thus, the general bounded and square-integrable solution to Eq. (1) may be 
found whenever this equation can be transformed into Eq. (2). We now determine 
the constraints on the functional form of the superpotential that must be satisfied for 
this to be possible. To proceed we introduce new variables u = u(a) and v = V(T) 
that are arbitrary functions of the minisuperspace null coordinates 0 z a + ,O and 
TEQ-~~. Th 
dv/&Y = 

ese new variables satisfy the boundary conditions au/& = &~/a0 and 
-au/&+@ and these constraints ensure that the derivative terms in JZq. (1) 

are transformed into the canonical form: 

[ 
au au a* -- --mm2 *=O. 
aa aa au&J 1 (5) 

It follows that Eq. (5) reduces to Eq. (2) if the new variables u and v are themselves 
solutions to the equation 

m2 
au au du dv c--z-- 
act act dadr’ (6) 

Consequently, the general solution to Eq. (1) can be deduced immediately if a solution 
to the constraint equation (6) can be found. Effectively, the problem of solving the 
linear, second-order partial differential equation (1) has been reduced to finding a 
solution to the npn-linear, first-order equation (6) and in many cases it is considerably 
easier to solve this latter equation. 

Indeed, it is clear from the second equality in Q. (6) that when the superpotential 
has the generic form 

m*(a, P> = m+(a)m-(T), (7) 
where rn* are some known analytical functions, Eq. (6) admits the general separable 
solution 

U =t J udo’m+(a’), v = 2-l JrdT’m-(f), (8) 
where z is an arbitrary separation constant. Thus, the general solution to Eq. (1) is 
given by Eqs. (3) and (8) w h enever the superpotential is a separable function of the 
minisuperspace null coordinates. 
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As well as being interested in exact solutions to’the Wheeler-DeIVitt equation, 
however, it is also important to determine semi-classical wavefkctions in the LVKB 
approximation corresponding to h + 0. In this approximation the wavefunction is 
viewed as a linear superposition of waves Q w e-iS’h, where S is interpreted as the 
classical action that satisfies the Hamilton-Jacobi equation. 

When Eq. (6) is satisfied the Hamilton-Jacobi equation has the form 

. 

asas m-=-r 
ar au ' (9) 

where r E 6 and this equation can be solved in full generality by employing a 
Legendre transformation [S]. We define new variables t z as/&, q z 8S/av and 
a new function p([, 17) E r[ + vt) - S(r,v). Partial differentiation with respect to < 
implies that r = 0p/& and substitution of this result into Eq. (9) implies that 

The genemf solution to this equation is 

fml) = -&* + fb?)1 
where f(q) is an arbitrary function of 17, and the calculation is completed by trans- 
forming back into the old variables. We deduce immediately that r = -<q and partial 
differentiation of the solution (11) with respect to q implies that 

aP 
all=” 

= -32 + y 

Thus, it follows from the definition of p that 

(12) 

All developable solutions to Eq. (9) can be written in this fashion and Eq. (13) 
therefore represents the general solution to the Hamilton-Jacobi equation (9) in para- 
metric form. In principle, once f(q) is specified we can determine 17 = q( u, v) from 
the second equation in (13) and substituting this result into the first equation yields 
the action in terms of u and v, or equivalently, in terms of the original minisuperspace 
coordinates Q and p via Eq. (8) (61. 

Some particular examples are of interest. One solution to Eq. (9) is S = bu - b-‘v 
and this semi-classical wavefunction is identical to the family of exact solutions \kb 
that satisfy the Wheeler-Dewitt equation (2). In this case the WKB approximation 
is exact. A second separable solution is given by S = *2iJm, where 
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{ ui, pi} are constants and this solution corresponds to f(q) = -ui/n. Finally, exact 
expressions for q(u, u) can also be found if f oc q, f oc qL3 and f cx In q. 

There are a number of interesting minisuperspaces for which the above techniques 
and solutions are relevant. In many cases the superpotential of the wavefunction is 
independent of one of the null coordinates, i.e. it is a single function of either Q or r. 
This is the case for the minisuperspace corresponding to a dimensional reduction of 
five-dimensional Einstein gravity (71. The Kantowski-Sachs and Bianchi III Universes 
containing vacuum energy also admit this type of separation (81. More generally, if 
m*(d) = ct - p, Eq. (1) may be separated into Airy’s equation and this implies 
that the general solution to Eq. (2) may also be expressed as a combination of Airy 
functions Ai(a + z) and Bi(p + z), where z is an arbitrary constant. 

The gravitational component of the Wheeler-Dewitt equation derived from a 
(1 + I)-dimensional dilaton gravity theory leads to a superpotential of this form. 
Recently there has been considerable interest in (1+ l)-dimensional theories of gravity 
coupled to matter [4, 9, 10, 111, since these are exact string theories if the space-time 
is interpreted as the string world sheet. In particular, the one-loop, string-inspired 
effective action discussed in Ref. [lo] has the form 

s=’ dtx J [ TM -~a,xa_x + $x3-n 
lN 

+P2e2(X-R)/K + 5 C a+ fja- fj 
J=l I 

(14) 

in the conformal gauge, where A4 is the two-dimensional manifold, fj are conformal 
scalar fields, 12 is a resealed dilaton field and x is a Liouville-type field. The constants 
K = (N - 24)/12 and p2 are assumed to be positive-definite (12). The Wheeler- 
Dewitt equation corresponding to this renormalizable model of dilaton gravity has 
been derived by calculating the Virasoro generators for a space-time topology R x S’ 
[13] and has the form 

K a2 K a2 1 N a2 
--_---- 
4 ax; c 4 an;. -2 j=13j$- 

,4p*e2(x~-fb)/~ _ K -2]rk=o, (15) 

where ~0, etc., represent the zero modes of the harmonic expansion of the fields on 
the cylinder. 

- . 

If we separate the wavefunction into its gravitational and matter components 
with the ansatz 9 = @(~a, C!,)p(fje), introduce a separation constant z2 _< K + 2 

and identify (a, p) with (~0, Qo), ‘t I is readily seen that 9 statisfies Eq. (1) with a 
superpotential ( f the form 

. . 
Km2 = 4,J2e2(xo-~)/K + (K + 2 - z*). (16) 
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Since this is a single function of (,uo - Q,), Eq. (8) implies that the solution may be 
written in terms of the new variables 

24 = r(yo + flo) 

L =; - 1 
[ 
2&2’0/” + K-*(6 + 2 - Z2)To] ( (17) 

where ~0 = yo - Ro. 
,A third class that has many applications is 

& = +'o+lP 
9 (18) 

where {mo,y,~} are arbitrary constants subject to the single restriction that y # f~ 
1141. Eq. (18) separates into m+(c) = mOe(c+7)a/2 and m-(7) = mOe(c-f)‘/2 and this 
class may be solved with the coordinate transformation 

2zmo (c+y)a/2 2m0 
u=-e * 2) = e(f-+/2 

f+Y 4+-Y) - 
(1% 

Spatially flat, isotropic Universes containing a single scalar field that self-interacts 
through an exponential potential lead to a superpotential of this form and many 
natural extensions to Einstein gravity, including some Kaluza-Klein and R” higher- 
order gravity theories, are conformally equivalent to this theory. Superpotentials of 
this type also arise in some Bianchi class A Universes [ 151. 

Moreover, this class may be relevant to the study of quantum black holes. A dis- 
tant, static observer can describe a quasi-stationary, classical black hole in terms of 
a ‘stretched horizon’ or ‘membrane’ located just outside the event horizon (161. How- 
ever, since this membrane is not seen by a freely-falling observer, the physical reality 
of such an object has remained uncertain. In principle this ambiguity is resolved by 
the hypothesis of black hole complementarity [lr]i if the separate measurements made 
by-the stationary and freely-falling observers are complementary, the latter observer 
has no way of reporting the non-existence of the membrane to the former and as far 
as the static observer is concerned the membrane is a real, physical quantity. 

Motivated by these considerations, Maggiore recently proposed a quantum de- 
scription of black holes. by identifying the membrane’s degrees of freedom as the 
variables to be quantized [18]. In this picture the membrane dynamics is determined 
by the Dirac action of a closed relativisitic bosonic membrane in four dimensions: 

S mem 

axp dx” 
-- 

%b = %u ae gb 8 (20) 

where p is the membrane tension, y& (a,b = 0, 1,2) is the metric induced on the 
membrane by the space-time metric gPy and xp = xp(p) (p, v = 0, 1,2,3) are the 
embedding equations that map the membrane’s manifold X: into its world-volume in 
space-time 1191. The coordinates c parametrize this world-volume. 
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-4s with quantum cosmology. however, it is necessar!. to impose a high degree of 
symmetry on the theory in order to proceed analytically. .A very useful approximation 
to a black hole event horizon is gixoen by the horizon of the Rindler space-time 

ds’ = -g 2_,2dt2 + dr’ + dy2 + d:2. (21) 

This is the metric as seen by an observer undergoing uniform acceleration g in 
hlinliowski space-time. It has a future (past) event horizon at z = t (z = -t) 
that is formally equivalent to the Schwarzschild black hole event horizon in the limit 
of infinite mass. 

In order to determine the quantum dynamics of this horizon, we assume that 
the embedding equations have the form xp = [~~(,$o),<r, c2, z(<“)]. The non-zero 
components of Tab are then calculated from Eq. (20) and the action simplifies to 

S mem = -P ' ds GAB-~-~ J [ dYA dYB “* 1 9 (22) 

where p’ E pjdzdy, GAB E g2.$e29’*diag(1, -l), YA s (z’, t,) and gz. E 1x1 (z/to). 
This is the action of a point-particle moving in a (l+l)-dimensional space-time with 
metric GAB and coordinates YA and it is straightforward to show that the Hamilto- 
nian of this particle vanishes. .The system is quantized by defining the commutation 
relations [YA,pB]-’ = idAB, where PA E (p,o,p,,) are the conjugate momenta, and 
the analogue of the Wheeler-Dewitt equation is 

[ 

a2 a2 --- 
at: ax; - (p’gz0)2e2gz* 9 = 0. 1 (23) 

Comparison with Eq# (18) therefore implies that this equation reduces to Eq. (2) 
after the coordinate transformation 

21 f #*o&.+‘), u E L&)@h-20’. 

Hence, this model also admits the quantum and semi-classical solutions derived above. 
In conclusion, we have shown how the general solutions to the Wheeler-Dewitt 

and Hamilton-Jacobi equations corresponding to a two-dimensional minisuperspace 
can be found analytically if the superpotential has the generic form given by Eq. (7). 
More generally, these equations can be solved whenever new coordinates u = u(a) 
and tt = u(r) can be found that satisfy Eq. (6). 
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